
Improvement of Wind Power Prediction from Meteorological1

Characterization with Machine Learning Models2

Christiana Sassera,b, Meilin Yub, Ruben Delgadoc
3

aNOAA EPP Earth System Sciences and Remote Sensing Scholar,
bDepartment of Mechanical Engineering, University of Maryland, Baltimore

County, Baltimore, 21250, MD, USA
cJoint Center for Earth Systems Technology, University of Maryland, Baltimore

County, Baltimore, 21250, MD, USA

Abstract4

To mitigate uncertainties in wind resource assessments and to improve the estimation
of energy production of a wind project, this work uses a decision tree machine learn-
ing model to assess the effectiveness of hub-height wind speed, rotor-equivalent wind
speed, and lapse rate as variables in power prediction. Atmospheric data is used to
train regression trees and correlate the power outputs to wind profiles and meteorologi-
cal characteristics to be able to predict power responses according to physical patterns.
The decision tree model was trained for four vertical wind profile classifications to show-
case the need for multiple calculations of wind speed at various levels of the rotor layer.
Results indicate that when compared to traditional power curve methods, the decision
tree combining rotor-equivalent wind speed and lapse rate improves prediction accuracy
by 22% for the given data-set, while also proving to be the most effective method in
power prediction for all classified vertical wind profile types. Models incorporating lapse
rate into predictions performed better than those without it, showing the importance of
considering atmospheric criteria in wind power prediction analyses.
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1. Introduction7

To diminish anthropogenic climate change and curtail global temperature rise, de-8

carbonization of the electricity sector, the largest source of global greenhouse gas emis-9

sions, is required. The development of wind energy resources for clean electricity is10

rapidly growing in the United States, with projections of achieving 20% of wind-derived11

electricity by 2030, including 202 gigawatts (GW) of onshore wind and 22 GW of offshore12

wind [1]. As wind power costs have been declining over the past few years, the preva-13

lence of wind energy adoption is growing [2, 3]. Indeed, successful deployment of wind14

technologies requires accurate prediction of the wind farm power prior to construction15

and near real-time prediction post-construction for balancing the electricity grid.16

During the first stage of developing a wind energy project, the wind and other re-17

lated factors for a potential project site are measured across the rotor of the turbine18

and the project area using remote sensing systems and meteorological towers. After the19

wind resource data has been validated, modeled, and uncertainties have been assessed,20

the project is then designed and the energy production is estimated [4]. To accurately21
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determine the energy production, predicted losses such as wake effects, turbine availabil-22

ity, electrical losses, turbine performance, environmental effects, curtailment, etc., are23

taken into consideration when calculating the annual, net energy estimate [4, 5, 6]. Even24

when these losses and uncertainties are considered, the phenomenon known as the wind25

farm under-performance bias in which an operational wind farm produces significantly26

less energy output than the amount expected prior to construction, still exists [7, 8]. A27

good model estimate of energy production and predicted losses is necessary for accurately28

determining long-term performance of wind farms.29

The Annual Energy Production (AEP) of a wind energy project is determined using30

the turbine power curve (TPC), which is the power output as a function of kinetic energy31

flux through the rotor disk of the wind turbine. The power curve equation is as follows,32

P (t) =
1

2
cpρAU

3(t) (1)

where P(t) is the power at a given time t in Watts, cp is the power coefficient which is the33

ratio of the power extracted by the turbine to the power of the wind resource (unitless),34

ρ is the air density in kg/m3, A is the turbine rotor swept area in m2, and U is the35

instantaneous wind speed located at the center of the turbine rotor disk in m/s2, also36

known as the hub-height wind speed (HHWS), at a given time t in seconds [9].37

The TPC is typically characterized by the cut-in wind speed where the turbine begins38

to generate power, a sloped region where the power increases at an accelerated rate, the39

rated speed where the turbine reaches its rated capacity, and the cut-out speed where40

the turbine shuts down to protect against higher winds [4]. As explained in Wagner et41

al. [10], this method may have been suitable for smaller turbines with lower hub-heights42

and smaller rotor diameters, but larger turbines are susceptible to varying wind conditions43

therefore determining the power as a function of hub-height wind speed is not an accurate44

representation of power.45

Although the TPC method may be good for estimations of the power, it cannot be46

assumed that the turbine produces the expected power at every wind speed and that the47

HHWS is representative of wind speed throughout the rotor layer. Power output depends48

on fluctuating wind conditions such as variation in wind speed across the rotor layer and49

vertical wind variances. Research shows that the vertical wind variance can deviate from50

the expected power-law shape due to turbines increasing in size, thus increasing exposure51

to varying wind conditions such as large wind shear and turbulence within the rotor area,52

which stresses the importance of considering the varying wind speed across the rotor layer53

[10, 11, 12].54

A technique known as Rotor Equivalent Wind Speed (REWS), accounts for varying55

wind speed throughout the rotor area of a wind turbine by assigning a wind speed to56

each designated area within the rotor layer of the turbine [13]. In the IEC 61400-12-157

Ed. 2 standard, the use of the REWS term, Veq, (Eq. 2) for estimation of annual energy58

production for wind turbines is promoted due to its potential in more accurately estimate59

power production for wind farms [14]. Shown in Figure 1, the rotor area (the circle) is60

segmented into multiple areas, Ai, and assigned a corresponding wind speed, vi. This61

method consists of averaging the weighted wind speed over the rotor sweep area. Note62

that the figures in this paper have been created by the authors if no specific explanation63

or reference is given in the caption.64
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Figure 1: Illustration of Rotor Equivalent Wind Speed, where segments of the rotor area are weighted
by associated wind speeds by height.

The equation for the REWS term is as follows,65

V eq = 3

√√√√ 1

A

N∑
i=1

v3iAi (2)

where Veq is the rotor equivalent wind speed in m/s2, Ai is the rotor layer area corre-66

sponding to the height at the ith rotor layer height in m2, vi is the hourly mean wind speed67

corresponding to the height at the ith rotor layer height in m/s2, A=
∑

iAi is the entire68

rotor sweep area in m2, and N is the total number of measurement heights (unitless).69

It has been found that utilizing REWS can better account for variances in vertical70

wind profiles (VWPs) and can reduce power prediction uncertainty in some scenarios. It71

was explored in Wagner et al. [10] that wind profiles usually do not follow a logarithmic72

profile; in the case of flat terrain, the shape heavily depends on atmospheric conditions73

and it was found that measuring the wind speed at multiple points over the rotor sweep74

area would improve the correlation between wind input and power output. Later, during75

an experiment where wind speed profiles were measured in front of a multi-megawatt76

turbine, Wagner [15] observed that when REWS was successfully applied, it reduced77

scatter in the power curve, therefore being less sensitive to shear and less dependent on78

site which is expected to decrease power curve measurement uncertainty.79

However, there have been scenarios where the REWS method provides marginal to80

no improvement based on atmospheric conditions, turbine design, site location, etc. Red-81

fern [16] found that for most situations, use of the REWS has marginal impacts on model82

forecasts except for scenarios with highly nonlinear wind shear. Similarly, it was found83

that the usefulness of REWS depends on turbine dimension and wind shear regime, where84

if the ratio of turbine rotor diameter to hub-height is below 1.8 and the wind shear is85

constantly between -0.5 and 0.4, the REWS method may not be necessary [17]. During86

a study within the International Energy Agency Wind Annex 32 designed to test REWS87

under various conditions, Wagner [13] observed that when the power curves for REWS88

and HHWS were compared, the difference was dependent on the site location. Though89

more research and analysis are needed to assess what site conditions and turbine designs90

benefit from the REWS method, this method does demonstrate the susceptibility of the91

turbine power curve by atmospheric conditions and the usefulness of measuring wind92

speed across the rotor layer as opposed to at a single instance, such as HHWS.93
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Power prediction methods, such as the TPC and REWS, only utilizes wind speed as a94

factor for prediction, without considering the surrounding atmospheric criteria. Studies95

have shown that variations in atmospheric conditions, such as temperature, atmospheric96

stability, wind shear, wind direction, and turbulence intensity can be factors in over or97

underestimation of turbine power output [15, 18, 19, 20, 21]. Wharton [22] found that98

instances with equivalent hub-height wind speeds, but different wind profile shapes would99

cause a turbine to produce varying power output and that this variability may have been100

due to atmospheric stability. Since wind is the main function of power, the wind profiles,101

including factors of wind shear, wind direction, and turbulence, can then be associated102

with varying atmospheric stability. Wharton [22] concluded that power generated under103

stable conditions was higher than that generated under strongly convective conditions,104

whereas Vanderwende [23] observed that there would be an under-performance in the105

turbine under stable conditions and an over-performance during convective conditions at106

moderate wind speeds. Gathering atmospheric criteria other than wind speed may be107

useful in developing a broader, more accurate picture of the conditions affecting power.108

With this shift in analyzing alternate atmospheric criteria, there is also a shift in power109

estimation techniques towards machine learning models. Machine learning models have110

been algorithmically improving for wind power forecasting and monitoring [24, 25, 26, 27,111

28, 29] but the addition of atmospheric variables into these algorithms has been found112

to increase the accuracy of predictions [30, 31]. Clifton [32] used simulation data of a113

1.5-MW turbine to train regression trees to predict the turbine response for combinations114

of wind speed, wind shear, and turbulence intensity and concluded that the accuracy of115

the power predictions was three times higher than that from the traditional methodology.116

In this work, the hub-height wind speed, rotor-equivalent wind speed, and lapse rate, are117

analyzed as conditions in a machine learning decision tree algorithm. The data has also118

been classified into four vertical wind profile types to evaluate the relationship between119

the physical, atmospheric patterns and the turbine power response.120

The remainder of the paper is organized as follows: Section 2 gives an overview of121

the campaign site and available data, gives insight into how the vertical wind profiles122

and lapse rate were determined, and gives an outline of the machine learning decision123

tree model implemented in this research. Section 3 presents the results of the decision124

tree model combinations and the vertical wind profile analysis and discusses further the125

accuracy of each prediction method and how each method compares to one another.126

Section 4 gives the conclusions of this research and takeaways.127

2. Methodology128

2.1. Data Collection129

Data used in the analysis of this work was collected in the VERTical Enhanced miXing130

(VERTEX) field campaign in Lewes, Delaware between September and October of 2016.131

The purpose of this field campaign was to study the effect of wind turbine wake on the132

atmosphere-surface exchange of momentum, sensible heat, and water vapor [33]. Many133

instruments were deployed to collect data on the atmospheric conditions in the field134

surrounding an operational 2-MW G90 wind turbine with a diameter of 90m and a hub-135

height of 80m. For the article/study data from a scanning Doppler wind lidar, turbine,136

and a meteorological (met) tower is used for analysis. Figure 2 shows the location of137

the Doppler wind lidar, meteorological tower, and turbine. For this research, the lidar138

and met tower were used to obtain wind measurements and meteorological measurements139
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(such as temperature). The met tower included sensors such as a 3D sonic anemometer140

and a temperature and relative humidity probe while the scanning lidar included multiple141

scans explained in detail in Archer et al. [33].142

Figure 2: A Google Earth [34] visual of the VERTEX Campaign Site and the locations of the scanning
Doppler lidar (top), Meteorological (Met) Tower (middle), and 2-MW G90 Wind Turbine (bottom).

To determine the VWP and to not have the lidar measurements influenced by the143

inflow momentum of the turbine or the wake effect, a Virtual Tower was implemented144

upstream of the turbine. The Virtual Tower is a column of 10-minute spatially and tem-145

porally averaged VWP. To determine the wind speed from the lidar at exact times and a146

specific location, the Optimal Interpolation (OI) method of lidar retrieval, which is a least-147

squares method of data assimilation, was implemented [35]. The least-squares method148

interpolates the available data based on estimated weights that are chosen to minimize149

error. This method significantly improves velocity retrieval accuracy and preservation of150

local information compared to other data assimilation methods [36]. The measurements151

from the OI method that are within the Virtual Tower radius (R) and during the aver-152

aged time are divided into their respective height bins, shown in Figure 3, then averaged153

together according to their bin to create the 10-minute averaged VWPs. The power from154

the operational wind turbine data was also averaged every 10-minutes to correlate to the155

wind profiles.156
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Figure 3: Virtual Tower height bins (cylinder) with respect to the wind turbine. Each height bin is a
slice of the Virtual Tower cylinder, denoted by H. Not to scale.

The location of the Virtual Tower, shown in Figure 4, is based on the wind direction,157

(θ), and a set distance from the turbine, radius (r). The radius around the turbine in the158

layout is to guarantee that the lidar measurements are not influenced by the movement of159

the turbine, while the wind direction in the layout was determined by the wind direction160

captured by the highest point on the met tower (49m).161

Figure 4: Top view of the Virtual Tower layout with respect to the wind turbine. Virtual Tower (top
circle) with radius R and the turbine (small circle) with radius r. The turbine is a distance of (r+R)
away from the Virtual Tower. The wind direction is θ a with respect to the North line (dashed line) and
the Distance line.

2.2. Lapse Rate162

The gradient of temperature results in a gradient in pressure. These differences in163

air pressure then cause the air to move from the high-pressure area to the low-pressure164

area, thus causing wind. The larger the difference in temperature and air pressure, the165

higher the wind speed, and vice versa. This is how temperature affects wind at a basic166

level. This relationship between temperature and wind speed variances can be applied167

to differences in temperature with height throughout the atmosphere, affecting vertical168

wind speed. The lapse rate, the rate of change of temperature with respect to the change169

in height, was also analyzed in the model. The lapse rate, Γ, is calculated using Eq. 3 as170
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follows,171

Γ = −dT
dz
, (3)

where T is temperature in ◦Celsius and z is height in meters [37].172

Incorporating an environmental factor that is not wind speed, such as variations of173

temperature, could give useful insight into the environmental conditions of the site as174

explained earlier in Section 1. The temperature aspect has the potential to improve175

power prediction; similarly, to other useful studies which incorporate an atmospheric176

stability term that uses a temperature parameter [22, 21].177

Note that the lapse rate in this study is found using met tower data, therefore, uses178

five recorded heights of z from 10 m to 49 m. For a more refined analysis of the lapse179

rate, data from heights within the rotor layer of the turbine should be used.180

2.3. Vertical Wind Profile (VWP) Shapes181

The VWP shape allows us to better understand the nature of the wind across the182

lower atmosphere, specifically the rotor layer of the turbine. The VWP shape has the183

potential to have a significant impact on turbine power estimation; for example, if the184

wind speed in contact with the turbine blade at the uppermost position in the rotor185

layer is 10 m/s, while the wind speed in contact with the turbine blade at the lowermost186

position is 6 m/s, a significant difference in forces would be present on the turbine in that187

given time.188

The VWP is a series of wind speed measurements taken at various heights that show189

the vertical wind structure in a specific location. VWPs have been shown to deviate from190

the industry-expected power-law shape, thus, showing the importance of considering191

wind deviation in the power prediction of wind turbines [11]. The VWP classifications192

presented in Figure 5 and Table 1 are based on the algorithm used in St. Pé et al. [11]193

and have been implemented into this work. Types 1 and 2, the power law expression194

and linear expression respectively, are based on the goodness-of-fit criterion for their195

corresponding mathematical expressions. Types 3 and 4, the relative low-level wind196

maximum expression and relative low-level wind minimum expression, respectively, are197

based on relative maximum and minimum wind speed criteria. Note that the tables in198

this paper have been created by the authors if no specific explanation or reference is given199

in the title.200

Visualization of the four VWP shape classifications is presented in Figure 5. It demon-201

strates that if a vertical slice of the wind speed from heights z1 to z2 were taken across the202

rotor layer, these are the potential shapes that would be seen. Type 1 is representative203

of the TPC, as the wind speed does not change much through the rotor layer and can be204

expressed by the wind speed at the hub-height of the turbine. Type 2 is typical of profiles205

with wind shear, an increase in wind speed with change in height, thus the linear shape.206

Types 3 and 4 represent atypical profiles where the wind speed varies significantly from207

the bottom to the top of the rotor layer.208
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Figure 5: Schematic of the four Vertical Wind Profile shape classifications. Heights z1 and z2 indicate
the turbine’s bottom and top rotor layer measurements.

Table 1: Vertical Wind Profile Classifications.

Types Expressions

1 Power Law Expression
2 Linear Expression
3 Relative Low-Level Wind Maximum
4 Relative Low-Level Wind Minimum

VWP Type 1 was analyzed using a power law expression and forced fit through the209

hub-height of the turbine and based on the goodness-of-fit criterion set to the residual210

sum of squares (RSS) ≤ 0.10. The power law formula is expressed as follows,211

u(z) = uhub(
z

zhub
)α (4)

where uhub is the wind speed at hub-height in m/s, zhub is the hub-height in meters, z is212

the observed height in meters, and α is the power law exponent which is used to analyze213

the wind shear (unitless) [4, 11].214

VWP Type 2 was analyzed using a linear expression and based on the goodness-of-fit215

criterion set to RSS ≤ 0.10, similarly, to Type 1. The linear fit formula is expressed as216

follows,217

f(u) = β0 + β1u+ ε (5)

where β0 is the y-intercept in m/s, β1 is the slope coefficient (unitless), u is the wind218

speed at various heights in the profile in m/s, and ε is the error term in m/s [11, 38, 39].219

VWP Type 3 and 4 were based on the relative maximum and minimum wind speed220

criteria. The relative maximum formula, Eq. (6), and the relative minimum formula,221

Eq. (7), are as follows,222

z1 < Max U z < z2 (6)
223

z1 < Min U z < z2 (7)

where Max Uz is the height of maximum wind speed in meters, Min Uz is the height of224

minimum wind speed in meters, and z1 and z2 are the turbine’s bottom and top rotor225

layer measurements in meters, respectively [11].226
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Note that in this work, 64% of the data was Type 1, 16% of the data was Type 2,227

13% of the data was Type 3, and 7% of the data was Type 4. Having more data points228

and equal coverage of each VWP could help the model be more refined.229

2.4. Machine Learning Overview230

With the knowledge of how varying atmospheric criteria and the use of different231

power estimation techniques affect power prediction of a wind turbine, it is relevant to232

test the effectiveness of HHWS, REWS, and lapse rate as prediction variables using a233

machine learning model. Machine learning models are sets of rules that correlate input234

parameters to output values. The available data is used as both training and testing data.235

The training data is used to ensure that the model recognizes patterns in the data, while236

the test data is used to examine how well the machine can predict outputs based on its237

previous training. The machine learning algorithm creates a model that most effectively238

maps the inputs of the training data to the associated output values by minimizing the239

error metric. Then, the error is determined for the testing data to ensure that the model240

recognizes patterns for all data. This is so the model is not over-fit to the training data,241

making it too specific and not able to be generalized across data sets. When similar error242

values for training and testing data occur, a proficient model was created.243

We employ regression decision trees, which predict responses to data by following the244

decisions in the tree from the beginning down to a node, root to leaf [39, 40], to conduct245

ensemble machine learning of the wind power data. Note that the decision tree is one246

of the few machine learning models that directly give interpretable outputs from inputs247

at every decision layer. That is a major reason why regression decision trees are used248

to perform the current study. The model begins at the root node (i.e., the node on top249

of the decision tree), which is the first test carried out on the training data-set. From250

there, based on the outcome, the node branches out to internal nodes that conduct other251

tests. The tree continues to branch until it reaches the set number of conditions, the252

maximum number of splits, or desired outcome of the analysis. At the end of the tree,253

there are leaf nodes, each of which holds a numeric prediction. In the case of this research,254

the leaf nodes represent the wind power predicted by the regression tree. Note that the255

mean squared error (MSE) is used as the error metric to calculate the homogeneity of256

the sample as it branches. The MSE is calculated after every split. The variable with the257

highest MSE reduction is chosen for the following internal node. The splitting process is258

continued until a near homogeneous model is created.259

An example of a decision tree is shown in Figure 6. The predictor variables used in260

this example are HHWS and lapse rate while the response variable is turbine power. The261

model begins at the root node, which is the variable, HHWS with the condition HHWS262

≥ 10. The variable and value were chosen for the root node due to having the highest263

MSE reduction. This node then branches out based on the results of the condition and264

the MSE calculation. If the HHWS is not greater than or equal to 10 m/s then those265

results are split to the left internal node HHWS ≥ 5. If the HHWS is greater than or266

equal to 10 m/s then those results are split to the right internal node HHWS ≥ 15. The267

internal node, HHWS ≥ 15, then splits to leaf nodes, the resultant response variable,268

based on the condition. If the HHWS is less than 15 m/s then the result is Power 4. If269

the HHWS is greater than or equal to 15 m/s then the result is Power 5. On the left270

side, the internal node, HHWS ≥ 5, splits into another internal node or a leaf node. If271

the HHWS is not greater than or equal to 5 m/s then the result moves on to the next272

internal node which uses the predictor lapse rate. The predictor shifted from HHWS to273
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lapse rate due to the MSE reduction being higher using lapse rate at this point in the274

decision tree. If the HHWS is greater than or equal to 5 m/s then the result is the leaf275

node, Power 3. The internal node, Lapse Rate ≥ 0.01, is the final test in the decision tree276

leading to two resultant leaf nodes. If the lapse rate is less than 0.01 then the result is277

Power 1. If the lapse rate is greater than or equal to 0.1 then the result is Power 2. The278

result of this decision tree is the data being categorized into Power 1, Power 2, Power 3,279

Power 4, and Power 5 based on HHWS and lapse rate.280

Figure 6: Decision Tree example using two variables, hub-height wind speed and lapse rate, to determine
the corresponding powers.

Several regression decision tree models were created to predict power based on different281

predictors, such as combinations of hub-height and rotor equivalent wind speed, wind282

profile shape, and lapse rate as shown in Table 2.283

Table 2: Decision Tree Predictors.

Decision Tree Labels Predictor Variables

A HHWS
B REWS
C HHWS & Lapse Rate
D REWS & Lapse Rate

One concern with decision tree methods is that they are prone to over-fitting the data.284

This means that the data used to train the model is the only data-set the model works285

well for, and the developed model is not versatile with varying data sets. The k-fold cross-286

validation was used to add regulation to the optimization problem, thus preventing the287

over-fit issue [39, 41]. This separates the data into constant k randomly chosen subsets of288

equal size. In this case, k was chosen to be 5. One subset is used to validate the training289

model using the remaining subsets. This is then repeated k times so that each subset is290

used once for the validation process.291

Ensemble machine learning methods are used to improve the prediction accuracy of292

decision trees. This approach can be explained by building a “predictive model by inte-293

grating multiple models” [42]. The ensemble methods are implemented in the MATLAB294

Statistics and Machine Learning Toolbox [39]. The ensemble aggregation method used295

is Least-Squares Boosting, LSBoost [43]. Note that in this work, the decision trees are296
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not ensembled with different sets of predictors; instead, for a specific predictor combina-297

tion, the ensemble training is used to boost the prediction accuracy of the corresponding298

decision tree. This is explained in Algorithm 1 as follows:299

In the training ensemble algorithm (Algorithm 1), two functions from MATLAB are300

being employed: treeTemplate, which returns a default decision tree learner template, and301

fitrensemble which uses the LSBoost aggregation to return a training ensemble. For the302

function treeTemplate, the input is the maximum number of splits, MNS. The result of303

this function will be used as a training template in the next function fitrensemble. Therein304

the inputs are the predictor X, the output response variable Y, the number of learning305

cycles/trees NumberTrees, the template Template built by the function treeTemplate, the306

k-fold cross-validation KFold, and the learn rate LR. The loop, i, is created to iterate307

through the number of learn rates: NumberLR. The LR progresses from 0.1 to 1 in 0.25308

increments. Another loop, j, is created to increase tree complexity, which is based on the309

number of MNS, NumberMNS. For the MNS, the tree-complexity level is exponentially310

increased for subsequent ensembles from decision stump, one split, to at most n-1 splits,311

n being the sample size and in the suggested sequence of: 20, 21... 2n-1.312

The returned result from the algorithm is the training ensemble, Model, which is cre-313

ated from using different combinations of the predictor variables HHWS, REWS, and314

lapse rate as expressed in Table 2, the response variable, NumberTrees (=150) learning315

cycles/trees, the decision tree learner template, the 5-fold cross-validation, and the learn-316

ing rates. From this model, the ideal learning rate and ideal maximum number of splits317

are found and then used to create a final model. All predictions in Section 3 are created318

using the final model with optimal parameters.319

Algorithm 1: Training Ensemble

Input: Input predictor variables: X
Response Variable: Y
Learn rate: LR
Number of Learn Rates: NumberLR
Number of maximum number of splits: NumberMNS

Maximum number of splits: MNS
Number of learning cycles/trees: NumberTrees
Template tree: Template
Number of folds for k-fold: KFold

Output: Trained regression ensemble model object: Model
for i = 1 to NumberLR, do

for j = 1 to NumberMNS do
Template = templateTree(MNS(j))
Model (j,i) = fitrensemble(X,Y,NumberTrees,Template,KFold,LR(i))

end

end

320

3. Results and Discussion321

The machine learning model was analyzed using several input predictor variables322

in varying combinations to test the prediction efficacy of each combination. In this323

section, how the predictor variables, HHWS, REWS, and lapse rate, affect the power324

prediction uncertainty will be analyzed. The varying decision tree combinations are325
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shown in Table 2. The data was also divided based on the four VWP Classifications as326

shown in Table 1, then each decision Tree Combination was analyzed for the given profile.327

3.1. Mean Absolute Error328

The Mean Absolute Error (MAE), the average difference between each value, was329

calculated to compare power accuracy and deviations and is expressed as,330

MAE =

∑n
i=1 |(PowerPredicted)i − (PowerActual)i|

n
(8)

where the PowerPredicted represents the power from the decision tree combinations A331

through D and traditional power prediction methods in kilowatts, the PowerActual in332

kilowatts is the power output measured from the operational wind turbine in the field333

experiment, and n is the sample size of the data (unitless).334

The MAE calculates the difference between the predicted power and the actual power335

thus allowing us to compare the various methods, value by value to see how they compare336

with the operational wind turbine output as shown in Eq. 8. In determining the percent337

error, the TPC method was used as a basis for comparison since it utilizes the turbine338

power curve (Eq. 1) and HHWS in its calculation, which is used in the industry. The339

MAE values can be compared to analyze which method more accurately predicted the340

power output in comparison to the operational wind turbine and the percent error values341

can be compared to analyze which method performed well in comparison to the TPC.342

Lower MAE indicates a better prediction of the turbine response. In this case, the higher343

the kW value, the more uncertainty, and the lower the kW value, the less uncertainty. In344

Table 3, the MAE is presented for each prediction method.345

Table 3: MAE of Power Prediction Methods

Method MAE (kW)

TPC 182.3
REWS 178.7

Decision Tree A 152.4
Decision Tree B 145.0
Decision Tree C 152.0
Decision Tree D 142.2

In general, the predictions from decision trees are better than those from the tra-346

ditional methods, such as TPC and REWS. The prediction method that produced the347

worst MAE was the TPC, which used the power equation and hub-height wind speed.348

The REWS method gives better prediction due to that it considers the wind profile.349

Interestingly, when decision trees are used for wind power prediction and analyzed in350

comparison to the equivalent power curve method, there is significant improvement in351

the MAE. For example, the decision tree using the equivalent wind speed improves the352

MAE from the REWS method by 23.2% and the decision tree using the hub-height wind353

speed improves the MAE from the TPC method by 19.6%. The prediction method that354

produced the best MAE was the Decision Tree Combination D which was the machine355

learning model using REWS and the lapse rate as predictors.356
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3.2. Predicted Power Error Percentages357

To convey the positive and negative effects of each variable and power prediction358

method more vividly, the percent error from the TPC method, shown in Table 4, were359

calculated using the error equation as follows,360

Error (%) =
MAEExperimental −MAETPC

MAETPC

× 100 (9)

where the MAEExperimental is the MAE from the decision tree combinations and the REWS361

method in kilowatts, and the MAETPC is the MAE from the TPC method in kilowatts.362

Note that TPC is used as the basis for comparison so that the improvement of the363

experimental prediction methods upon the traditional power estimation method can be364

quantified.365

Table 4: Power Prediction Error compared to TPC. Note that the “-” sign indicates an error decrease.

Method Error (%)

REWS -2.0
Decision Tree A -16.4
Decision Tree B -20.4
Decision Tree C -16.6
Decision Tree D -22.0

The REWS method improves upon the TPC by 2.0%; though not much, it shows that366

considering the variability of wind through each area of the rotor layer improves upon367

the prediction.368

To understand how the machine learning decision tree affects the prediction on a369

fundamental level, the TPC, which uses the HHWS in the power equation (as explained370

in Section 2),can be compared to the Decision Tree A model that uses the HHWS as371

the predictor value. This comparison directly shows the differences between using the372

power equation and the machine learning method. Decision Tree A uses the wind speed373

at the hub-height of the turbine to predict the power. This model resulted in a 16.4%374

improvement in power prediction when compared to the TPC. This shows that using a375

decision tree to predict power using the HHWS rather than a traditional power curve,376

significantly improves the power prediction.377

Tree B, using REWS as a predictor, improves upon the TPC by 20.4%. This is 4%378

improvement from using HHWS. This is due to the consideration of variable wind speeds379

throughout the rotor layer, where the wind speed is weighted with the rotor sweep area380

of the turbine. By considering the variance of wind, the power output can be accurately381

predicted.382

The addition of lapse rate to the first two combinations is also assessed. Tree C, using383

HHWS and lapse rate as predictors, improves upon the TPC by 16.6%. By pairing lapse384

rate with HHWS, the model is improved by 0.2% when compared to Tree A, HHWS.385

Tree D, using REWS and lapse rate as predictors, improves upon the TPC by 22%. By386

pairing lapse rate with REWS, the model improved 1.6% when compared to Tree B,387

REWS. Although the improvement seems not significant, as will be presented in the next388

subsection, substantial wind power prediction improvement shows up when the VWP389

departures from the power law and linear expressions.390
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3.3. Machine Learning Predictors Performance by VWP Types391

To better assess the performance of decision trees with different predictor combina-392

tions, the available data-set was divided into the four VWP Type Classifications and393

analyzed by each power prediction method. This is to understand if there are methods394

that work well overall or for specific wind profiles. In Table 5, the performance of de-395

cision trees with different predictor combinations, along with each VWP classification396

type, are presented; their MAEs and the corresponding error percentages in comparison397

to the TPC are shown. Tree A, with HHWS as the predictor, performs well for the Type398

1, Power Law Fits. TPC uses HHWS for its calculations and is assumed to be a power399

law profile. Therefore, it would make sense for the HHWS predictor to perform well for400

this wind type. Although this is an improvement in uncertainty reduction, using the401

wind speed at the hub-height does not consider the potential for differing wind speeds402

throughout the rotor layer. Tree B, with REWS as the predictor, performs best with re-403

spect to the TPC for the Type 3, Low-Level Wind Max Profile. This predictor performs404

well when the wind profile is non-logarithmic. This is due to REWS accounting for wind405

speed. Tree C, with HHWS and Lapse Rate as the predictors, and Tree D, with REWS406

and Lapse Rate as the predictors, both perform well for the Type 3, Low-Level Wind407

Max Profiles. Profiles classified as Low-Level Wind Max may have temperature profiles408

that affect wind shape. It is observed that adding lapse rate analysis to the wind speed409

improves prediction for most wind types.410

Table 5: Machine Learning Decision Tree Predictor Combinations with corresponding MAE and error
values for each VWP type (Note that the “-” sign indicates an error decrease)

Tree A: HHWS Tree B: REWS

VWP Type MAE (kW) Error (%) VWP Type MAE (kW) Error (%)

1 145.2 -19.9 1 136.9 -24.5
2 149.5 -17.2 2 126.9 -29.8
3 154.5 -19.7 3 129.2 -32.8
4 184.6 14.4 4 151.3 -6.2

Tree C: HHWS, Lapse Rate Tree D: REWS, Lapse Rate

VWP Type MAE (kW) Error (%) VWP Type MAE (kW) Error (%)

1 144.6 -20.2 1 137.2 -24.3
2 151.3 -16.2 2 124.2 -31.1
3 143.2 -25.6 3 125.3 -34.9
4 171.9 6.6 4 145.9 -9.5

As shown in Table 6, the REWS method performed well for Type 3, Low-Level Wind411

Max Profiles. This is in correspondence with Tree B. Both methods utilizing REWS412

performed well for this wind type. As seen in Tree B, REWS as a predictor in the413

decision tree is an improvement upon the TPC for all wind types whereas the REWS414

method only improves upon the TPC for half of the wind types (Refer to Table 7 for415

MAE values for TPC in order to compare with the Decision Trees and REWS). Analyzing416

this progressive method as a predictor in a machine learning model shows promise for417

analyzing the variability of the wind speed throughout the rotor layer.418
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Table 6: REWS Method with corresponding MAE and percent error for each VWP type. (Note that
the “-” sign indicates an error decrease)

VWP Type MAE (kW) Error (%)

1 179.3 -1.0
2 183.1 -1.4
3 158.3 -17.7
4 167.9 4.1

The TPC method performed the best for Type 4, Low-Level Wind Minimum Profiles,419

as shown in Table 7. The TPC Method is known to overestimate the power based on420

using a single measure of wind speed at the hub-height of the turbine. This can lead to421

explaining why this method performed well in some cases and poorly in others. When422

analyzing a Type 3, Low-Level Wind Maximum profile, the HHWS is the highest wind423

speed, therefore the power is more overestimated than other types. In the analysis of a424

Type 4, Low-Level Wind Minimum profile, the HHWS is the lowest wind speed of the425

profile, therefore the TPC overestimates this low value and, by chance, balances out the426

wind variance of the profile and is misleading.427

Table 7: TPC Method with corresponding MAE for each VWP type.

VWP Type MAE (kW)

1 181.2
2 180.6
3 192.4
4 161.3

Overall, predictions for Type 4 wind profiles either have marginal improvement or no428

improvement when compared to the other wind profile classifications. Note that Type 4429

accounted for only 7% of the overall data, therefore may not be as accurate as if there430

was an equal percentage of data for this Type in comparison to the other types. Future431

research should analyze these wind classifications with a near equal split in data for432

utmost accuracy.433

3.4. Further Discussion434

An explanation of the decision tree’s superior performance435

To further understand why the machine learning decision trees capture the realis-436

tic, under-performance of a turbine and the TPC and REWS tend to predict over-437

performance, the mean power distribution of the methods were examined. In Figure 7,438

the mean power distribution of the TPC method (first histogram), the REWS method439

(second histogram), and machine learning decision tree B and D (third and fourth his-440

tograms respectively), are shown. There is a slight difference in the TPC and REWS441

distribution, where in Table 4, the REWS method only improves upon the TPC method442

by 2%. The machine learning increases the sparsity of the data due to the algorithm443

clustering the power outputs. Note that even though the TPC and REWS have a more444

even distribution, these methods also have a large power cluster at around the 2000 kW445

region, which is the maximum output of the turbine. This explains why these methods446

calculate an over-performance of the turbine, whereas the decision tree methods capture447

the under-performance of the turbine, therefore, being more accurate in power prediction.448
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Figure 7: Mean power distribution of TPC method, REWS method, and Decision Tree B and D methods.

Wind shear effect449

Note that during this study the wind shear coefficient, α, from the power law expres-450

sion in Eq. 4 was also tested as a predictor in the decision tree model to represent wind451

shear. A general overview of the results revealed that using wind shear as a predictor452

worsened the power prediction of the model. Adding wind shear to HHWS and REWS453

worsened the prediction by 0.6% and 2.1%, respectively. When analyzed by VWP Type,454

the addition of wind shear to HHWS improved predictions for Type 2 and 4 as compared455

to HHWS alone.456

However, using wind shear as a predictor does not accurately portray VWP types457

3 and 4 because the wind shear coefficients of these profiles are similar and difficult to458

distinguish from those of Type 1, therefore, the improvement of VWP Type 4 using459

wind shear may not be an accurate assessment due to the nature of the expressions used460

to describe the wind profiles. Even with the wind shear coefficient showing marginal461

improvement for specific profiles, the REWS predictor still outperformed the wind shear462

and HHWS combination, showing that REWS better considers the wind shear and wind463

variation in its equation, regardless of wind profile shape. Using the wind shear coefficient464

from the power law expression is not a good indicator in a decision tree model due to465

variances in wind profiles.466

Lapse rate effect467

The lapse rate, determined from the met tower data which was based on five recorded468

heights ranging from 10 m to 49 m. Though the lapse rate through this height range469

indicated an improvement in prediction, a calculation of lapse rate throughout the entire470

rotor layer of the turbine would be useful in refining the model and improving the accuracy471

of prediction.472
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4. Conclusion473

As wind energy continues to grow, it is vital to utilize various techniques and resources474

to help mitigate uncertainties in wind resource assessments during pre-construction and475

to improve the estimation of annual energy production of a wind project to prevent under-476

performance bias in predictions. In this work, a decision tree machine learning model477

was implemented to assess the effectiveness of HHWS, REWS, and lapse rate as variables478

in power prediction. To correlate the power response to physical patterns the model was479

also assessed for four VWP classifications. Four sets of predictors were used to train and480

test in the model, HHWS, REWS, HHWS and lapse rate, and REWS and lapse rate.481

Results demonstrate that using a decision tree model has the potential to better consider482

the under-performance of a turbine in comparison to traditional power curve prediction483

methods, while also showing the significance of relating the physical patterns, such as wind484

profiles, to power outputs to understand the best prediction method for a given pattern.485

Out of the four predictor sets used, the decision tree model that incorporated REWS and486

lapse rate had the best overall performance, reducing the predicted power uncertainty by487

22% when compared to the TPC method. The combination of REWS and lapse rate into488

the model also reduced the predicted power uncertainty for all wind profile types tested,489

especially for those that deviated from a logarithmic-like profile. It was noted that the490

decision trees that incorporated lapse rate as a predictor performed better than those491

without lapse rate. This work further demonstrates the utility of machine learning in492

wind power prediction, the efficacy of measuring wind speeds throughout the rotor layer493

of a turbine, and the value of finding a relationship between physical patterns and the494

wind power response.495

The keys to moving forward with this method in wind energy power prediction and in496

wind resources assessments lie in the instrumentation and the training model. The first497

point is to ensure we have instrumentation installed at the new wind project site with the498

ability to gather atmospheric data and wind data at various heights for the length of the499

turbine. The second point is to develop the training model further with more points and500

turbine powers so that we can generalize the model to alternative locations. If these keys501

are implemented and prepared for, this method has the possibility of improving wind502

power predictions from other methods.503
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[20] A. Honrubia, A. Vigueras-Rodŕıguez, E. G. Lázaro, D. Rodriguez, M. Mej́ıas,586

I. Lainez, The influence of wind shear in wind turbine power estimation, 2010.587

[21] C. M. St. Martin, J. K. Lundquist, A. Clifton, G. S. Poulos, S. J. Schreck,588

Wind turbine power production and annual energy production depend on at-589

mospheric stability and turbulence, Wind Energy Science 1 (2) (2016) 221–236.590

doi:https://doi.org/10.5194/wes-1-221-2016.591

URL https://wes.copernicus.org/articles/1/221/2016/592

[22] S. Wharton, J. K. Lundquist, Atmospheric stability affects wind turbine power col-593

lection, Environmental Research Letters 7 (1) (2012) 014005. doi:10.1088/1748-594

9326/7/1/014005.595

URL https://iopscience.iop.org/article/10.1088/1748-9326/7/1/014005596

19



[23] B. J. Vanderwende, J. K. Lundquist, The modification of wind turbine performance597

by statistically distinct atmospheric regimes, Environmental Research Letters 7 (3)598

(2012) 034035. doi:10.1088/1748-9326/7/3/034035.599

URL https://iopscience.iop.org/article/10.1088/1748-9326/7/3/034035600

[24] H. Acikgoz, C. Yildiz, M. Sekkeli, An extreme learning machine based very601

short-term wind power forecasting method for complex terrain, Energy Sources,602

Part A: Recovery, Utilization, and Environmental Effects 42 (22) (2020) 2715–2730.603

doi:10.1080/15567036.2020.1755390.604

URL https://www.tandfonline.com/doi/full/10.1080/15567036.2020.1755390605

[25] H. Demolli, A. S. Dokuz, A. Ecemis, M. Gokcek, Wind power forecasting based on606

daily wind speed data using machine learning algorithms, Energy Conversion and607

Management 198 (2019) 111823. doi:10.1016/j.enconman.2019.111823.608

URL https://www.sciencedirect.com/science/article/pii/S0196890419308052609

[26] J. Heinermann, O. Kramer, Machine learning ensembles for wind power prediction,610

Renewable Energy 89 (2016) 671–679. doi:10.1016/j.renene.2015.11.073.611

URL https://www.sciencedirect.com/science/article/pii/S0960148115304894612

[27] N. Li, F. He, W. Ma, Wind power prediction based on extreme learning machine with613

kernel mean p-power error loss, Energies 12 (4) (2019) 673. doi:10.3390/en12040673.614

URL https://www.mdpi.com/1996-1073/12/4/673615

[28] A. Marvuglia, A. Messineo, Monitoring of wind farms’ power curves616

using machine learning techniques, Applied Energy 98 (2012) 574–583.617

doi:10.1016/j.apenergy.2012.04.037.618

URL https://linkinghub.elsevier.com/retrieve/pii/S0306261912003236619

[29] C. Carrillo, A. Obando Montaño, J. Cidrás, E. Dı́az-Dorado, Review of power curve620

modelling for wind turbines, Renewable and Sustainable Energy Reviews 21 (2013)621

572–581. doi:https://doi.org/10.1016/j.rser.2013.01.012.622

URL https://www.sciencedirect.com/science/article/pii/S1364032113000439623

[30] M. Optis, J. Perr-Sauer, The importance of atmospheric turbulence and stability in624

machine-learning models of wind farm power production, Renewable and Sustain-625

able Energy Reviews 112 (2019) 27–41. doi:10.1016/j.rser.2019.05.031.626

URL https://www.sciencedirect.com/science/article/pii/S1364032119303442627

[31] J. Nielson, K. Bhaganagar, R. Meka, A. Alaeddini, Using atmospheric inputs for628

Artificial Neural Networks to improve wind turbine power prediction, Energy 190629

(2020) 116273. doi:10.1016/j.energy.2019.116273.630

URL https://www.sciencedirect.com/science/article/pii/S0360544219319681631

[32] A. Clifton, L. Kilcher, J. K. Lundquist, P. Fleming, Using machine learning to632

predict wind turbine power output, Environmental Research Letters 8 (2) (2013)633

024009. doi:10.1088/1748-9326/8/2/024009.634

URL https://doi.org/10.1088/1748-9326/8/2/024009635

[33] C. L. Archer, S. Wu, A. Vasel-Be-Hagh, J. F. Brodie, R. Delgado, A. St. Pé,636
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